Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Radiol ; 77(6): e425-e433, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35351291

RESUMEN

AIM: To evaluate the diagnostic value of spectral detector computed tomography (SDCT)-derived iodine overlay maps and low-energy virtual mono-energetic images (VMI) for the initial locoregional assessment of primary, therapy-naive head and neck cancer. MATERIALS AND METHODS: Fifty-six patients with histologically confirmed untreated squamous cell carcinoma of the head and neck who underwent SDCT of the neck for staging purposes were included in this retrospective study. Attenuation, image noise as well as signal- and contrast-to-noise ratios (S-/CNR) in VMI40-70keV were obtained from region of interest (ROI)-based measurements in the tumour and important anatomical landmarks (sternocleidomastoid muscle, subcutaneous fat, thyroid gland, submandibular gland, carotid artery, and jugular vein). Tumour conspicuity and delineation, as well as subjective image quality, were rated for conventional images, VMI40-70keV, and iodine overlay maps using five-point Likert scales. RESULTS: The CNR of the tumour versus the floor of the mouth and the CNR of the tumour versus the sternocleidomastoid muscle was significantly higher in VMI40keV in comparison to conventional images (10.0 ± 7.3 versus 3.8 ± 3.3 and 11.3 ± 7.6 versus 3.6 ± 2.8; p<0.05 each). This was supported by qualitative results, as tumour conspicuity and delineation received superior ratings in iodine overlay maps and VMI40keV compared to conventional images (5 [3-5] and 5 [4-5] versus 3 [2-5]; 5 [2-5] and 5 [3-5] versus 3 [2-4], respectively, all p<0.05). VMI40keV yielded the highest score among all included image reconstructions for overall image quality (p<0.05 all). CONCLUSION: Iodine overlay maps and low-energy VMI derived from SDCT improve initial assessment of primary squamous cell carcinoma of the head and neck compared to conventional images.


Asunto(s)
Neoplasias de Cabeza y Cuello , Yodo , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Estudios Retrospectivos , Relación Señal-Ruido , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
2.
AJNR Am J Neuroradiol ; 42(4): 655-662, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541907

RESUMEN

BACKGROUND AND PURPOSE: Malignant melanoma is an aggressive skin cancer in which brain metastases are common. Our aim was to establish and evaluate a deep learning model for fully automated detection and segmentation of brain metastases in patients with malignant melanoma using clinical routine MR imaging. MATERIALS AND METHODS: Sixty-nine patients with melanoma with a total of 135 brain metastases at initial diagnosis and available multiparametric MR imaging datasets (T1-/T2-weighted, T1-weighted gadolinium contrast-enhanced, FLAIR) were included. A previously established deep learning model architecture (3D convolutional neural network; DeepMedic) simultaneously operating on the aforementioned MR images was trained on a cohort of 55 patients with 103 metastases using 5-fold cross-validation. The efficacy of the deep learning model was evaluated using an independent test set consisting of 14 patients with 32 metastases. Manual segmentations of metastases in a voxelwise manner (T1-weighted gadolinium contrast-enhanced imaging) performed by 2 radiologists in consensus served as the ground truth. RESULTS: After training, the deep learning model detected 28 of 32 brain metastases (mean volume, 1.0 [SD, 2.4] cm3) in the test cohort correctly (sensitivity of 88%), while false-positive findings of 0.71 per scan were observed. Compared with the ground truth, automated segmentations achieved a median Dice similarity coefficient of 0.75. CONCLUSIONS: Deep learning-based automated detection and segmentation of brain metastases in malignant melanoma yields high detection and segmentation accuracy with false-positive findings of <1 per scan.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Melanoma , Neoplasias Cutáneas , Automatización , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/secundario , Humanos , Imagen por Resonancia Magnética , Melanoma/diagnóstico por imagen , Melanoma/secundario , Neoplasias Cutáneas/diagnóstico por imagen
3.
Eur Radiol ; 31(6): 4350-4357, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33241515

RESUMEN

OBJECTIVES: The blood of patients with anemia demonstrates distinctly lower attenuation in unenhanced CT images. However, the frequent usage of intravenous contrast hampers evaluation of anemia. Spectral detector computed tomography (SDCT) allows for reconstruction of virtual non-contrast images (VNC) from contrast-enhanced data (CE). The purpose of this study was to evaluate whether VNC allow for prediction of anemia. METHODS: Five hundred twenty-two patients with CE-SDCT of the chest and accessible serum hemoglobin (HbS) were retrospectively included. Patients were assigned to three groups (severe anemia, moderate/mild anemia, and healthy) based on recent lab tests (≤ 7 days) for HbS following gender and the WHO definition of anemia. CT attenuation was determined using two ROI in the left ventricular lumen and one ROI in the descending thoracic aorta. ROI were placed on CE and copied to VNC. ANOVA, linear regression, and receiver operating characteristics were used for statistic evaluation. RESULTS: Average HbS was 11.6 ± 2.4 g/dl. Attenuation on VNC showed significant differences between healthy patients, patients with mild/moderate anemia, and severely anemic patients (all p ≤ 0.05). Applying cutoffs of 39.2/37.6 HU and 33.6/32.7 HU allowed to differentiate between healthy, mild/moderately, and severely anemic men/women (AUC 0.857/0.833 and 0.879/0.932). A linear relationship between HbS and attenuation on VNC was established (r2 = 0.54, HbS = - 0.875 + 0.329 × HU). CONCLUSIONS: An approximation of HbS and presence of anemia can be conducted based on simple attenuation measurements in contrast-enhanced SDCT examinations enabled by VNC imaging. KEY POINTS: • While the attenuation of blood is a previously described biomarker for anemia in non-contrast images, virtual non-contrast images from spectral detector CT circumvent this limitation and allow for diagnosis of anemia in contrast-enhanced scans. • Attenuation of blood in virtual non-contrast images derived from spectral detector CT shows a moderate correlation to serum hemoglobin levels. • Presence of anemia be estimated in virtual non-contrast images using proposed cutoffs of 39.2 HU and 37.6 HU for men and women, respectively, to differentiate between healthy and anemic patients.


Asunto(s)
Anemia , Tórax , Anemia/diagnóstico por imagen , Medios de Contraste , Femenino , Humanos , Masculino , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
4.
Eur J Radiol ; 117: 49-55, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31307652

RESUMEN

OBJECTIVE: This study aimed to identify the energy level of virtual monoenergetic images (VMI) that closest represents conventional images (CI) in order to demonstrate that these images provide improved image quality in terms of noise and Signal-to-noise ratio (SD/SNR) while attenuation values (HU) remain unaltered as compared to CI. METHODS: 60 and 30 patients with contrast-enhanced (CE) and non-enhanced (NCE) spectral detector CT (SDCT) of the abdomen were included in this retrospective, IRB-approved study. CI and VMI of 66-74 keV as well as quantitative iodine maps were reconstructed (Q-IodMap). Two regions of interest were placed in each: pulmonary trunk, abdominal aorta, portal vein, liver, pancreas, renal cortex left/right, psoas muscle, (filled) bladder and subcutaneous fat. For each reconstruction, HU and SD were averaged. ΔHU and SNR (SNR = HU/SD) were calculated. Q-IodMap were considered as confounder for ΔHU. In addition, two radiologists compared VMI of 72 keV and CI in a forced-choice approach regarding image quality. RESULTS: In NCE studies, no significant differences for any region was found. In CE studies, VMI72keV images showed lowest ΔHU (HUliver CI/VMI72keV: 104 ±â€¯18/103 ±â€¯17, p ≥ 0.05). Iodine containing voxels as indicated by Q-IodMap resulted in an over- and underestimation of attenuation in lower and higher VMI energies, respectively. Image noise was lower in VMI images (e.g. muscle: CI/ VMI72keV: 15.3 ±â€¯3.3/12.3 ±â€¯2.9 HU, p ≤ 0.05). Hence, SNR was significantly higher in VMI72keV compared to CI (e.g. liver 3.8 ±â€¯0.6 vs 3.0 ±â€¯0.8, p ≤ 0.05). In visual analysis, VMI72keV were preferred over CI at all times. CONCLUSIONS: VMI72keV show improved SD/SNR characteristics while the attenuation remains unaltered as compared to CI.


Asunto(s)
Radiografía Abdominal , Relación Señal-Ruido , Tomografía Computarizada por Rayos X , Realidad Virtual , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tomografía Computarizada Multidetector , Interpretación de Imagen Radiográfica Asistida por Computador , Reproducibilidad de los Resultados , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
5.
Eur J Radiol ; 109: 114-123, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30527292

RESUMEN

OBJECTIVES: The well-known boost of iodine associated-attenuation in low-keV virtual monoenergetic images (VMI_low) is frequently used to improve visualization of lesions and structures taking up contrast media. This study aimed to evaluate this concept in reverse. Hence to investigate if increased attenuation within the liver allows for improved visualization of little or not-enhancing lesions. METHODS: A 3D-printed phantom mimicking the shape of a human liver exhibiting a lesion in its center was designed and printed. Both, parenchyma- and lesion-mimic were filled with different solutions exhibiting 80/100/120HU and 0/15/40/60HU, respectively. Further, a total of 74 contrast-enhanced studies performed on a spectral detector CT scanner (SDCT) were included in this retrospective study. Patients had MRI or follow-up proven cysts and/or hypodense metastases. VMI of 40-200 keV as well as conventional images (CI) were reconstructed. ROI were placed in lesion and parenchyma(-mimics) on CI and transferred to VMI. Signal- and contrast-to-noise ratio were calculated (S-/CNR). Further, two radiologists independently evaluated image quality. Data was statistically assessed using ANOVA or Wilcoxon-test. RESULTS: In phantoms, S/CNR was significantly higher in VMI_low. The cyst-mimic in highly attenuating parenchyma-mimic on CI yielded a CNR of 6.4 ± 0.8; using VMI_40 keV, mildly hypodense lesion-mimic in poorly attenuating parenchyma-mimic exhibited a similar CNR (5.8 ± 0.9; p ≤ 0.05). The same tendency was observed in patients (cyst in CI/metastasis in VMI_40 keV: 4.4 ± 1.2/3.9 ± 1.8; p ≤ 0.05). Qualitative analysis indicated a benefit of VMI_40 keV (p ≤ 0.05). CONCLUSIONS: VMI_low from SDCT allow for an improved visualization of hypodense focal liver lesions exploiting the concept of contrast blooming in reverse.


Asunto(s)
Neoplasias Hepáticas/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Quistes/diagnóstico por imagen , Diagnóstico Diferencial , Femenino , Humanos , Radioisótopos de Yodo , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Dosis de Radiación , Radiofármacos , Estudios Retrospectivos , Relación Señal-Ruido , Tomógrafos Computarizados por Rayos X , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/métodos
6.
AJNR Am J Neuroradiol ; 39(12): 2205-2210, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30409850

RESUMEN

BACKGROUND AND PURPOSE: Conventional CT often cannot distinguish hemorrhage from iodine extravasation following reperfusion therapy for acute ischemic stroke. We investigated the potential of spectral detector CT in differentiating these lesions. MATERIALS AND METHODS: Centrifuged blood with increasing hematocrit (5%-85%) was used to model hemorrhage. Pure blood, blood-iodine mixtures (75/25, 50/50, and 25/75 ratios), and iodine solutions (0-14 mg I/mL) were scanned in a phantom with attenuation ranging from 12 to 75 HU on conventional imaging. Conventional and virtual noncontrast attenuation was compared and investigated for correlation with calculation of relative virtual noncontrast attenuation. Values for all investigated categories were compared using the Mann-Whitney U test. Sensitivity and specificity of virtual noncontrast, relative virtual noncontrast, conventional CT attenuation, and iodine quantification for hemorrhage detection were determined with receiver operating characteristic analysis. RESULTS: Conventional image attenuation was not significantly different among all samples containing blood (P > .05), while virtual noncontrast attenuation showed a significant decrease with a decreasing blood component (P < .01) in all blood-iodine mixtures. Relative virtual noncontrast values were significantly different among all investigated categories (P < .01), with correct hemorrhagic component size estimation for all categories within a 95% confidence interval. Areas under the curve for hemorrhage detection were 0.97, 0.87, 0.29, and 0.16 for virtual noncontrast, relative virtual noncontrast, conventional CT attenuation, and iodine quantification, respectively. A ≥10-HU virtual noncontrast, ≥20-HU virtual noncontrast, ≥40% relative virtual noncontrast, and combined ≥10-HU virtual noncontrast and ≥40% relative virtual noncontrast attenuation threshold had a sensitivity/specificity for detecting hemorrhage of 100%/23%, 89%/95%, 100%/82%, and 100%/100%, respectively. CONCLUSIONS: Spectral detector CT can accurately differentiate blood from iodinated contrast in a phantom setting.


Asunto(s)
Hemorragia Cerebral/diagnóstico por imagen , Extravasación de Materiales Terapéuticos y Diagnósticos/diagnóstico por imagen , Yodo/análisis , Accidente Cerebrovascular/complicaciones , Tomografía Computarizada por Rayos X/métodos , Hemorragia Cerebral/etiología , Medios de Contraste/análisis , Humanos , Fantasmas de Imagen , Sensibilidad y Especificidad , Accidente Cerebrovascular/diagnóstico por imagen
7.
Eur J Radiol ; 104: 136-142, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29857859

RESUMEN

OBJECTIVES: Image quality in head and neck imaging is often severely hampered by artifacts arising from dental implants. This study evaluates metal artifact (MA) reduction using virtual monoenergetic images (VMI) compared to conventional CT images (CI) from spectral-detector computed tomography (SDCT). METHODS: 38 consecutive patients with dental implants were included in this retrospective study. All examinations were performed using a SDCT (IQon, Philips, Best, The Netherlands). Images were reconstructed as conventional images (CI) and as VMI in a range of 40-200 keV (10 keV increment). Quantitative image analysis was performed ROI-based by measurement of attenuation (HU) and standard deviation in most pronounced hypo- and hyperdense artifact, fat and soft tissue with presence of artifacts. Qualitatively, extent of artifact reduction, assessment of soft palate and cheeks were rated on 5-point Likert-scales by two radiologists. Statistical data evaluation included ANOVA and Wilcoxon-test with correction for multiple comparisons; interrater-agreement was determined by intraclass-correlation coefficient (ICC). RESULTS: The hypo- and hyperattenuating artifacts showed an increase and decrease of HU-values in VMIhigh (CI/VMI200 keV: -218.7/-174.4 HU, p = 0.1; and 309.8/119.2, p ≤ 0.05, respectively). Artifacts in the fat, as depicted by image noise did also decrease in VMIhigh (CI/VMI200 keV: 23.9/16.4, p ≤ 0.05). Qualitatively, hyperdense artifacts were decreased significantly in VMI ≥100 keV (e.g. CI/VMI200 keV: 2(1-3)/3(1-5), p ≤ 0.05). Artifact reduction resulted in improved assessment of the soft palate and cheeks (e.g. CI/VMI200 keV: 2(1-4)/3(1-5) and 2(1-5)/3(1-5), p ≤ 0.05). Overall interrater agreement was good (ICC = 0.77). CONCLUSIONS: Virtual monoenergetic images from SDCT reduce metal artifacts from dental implants and improve diagnostic assessment of surrounding soft tissue.


Asunto(s)
Artefactos , Implantes Dentales , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Masculino , Metales , Persona de Mediana Edad , Fantasmas de Imagen , Intensificación de Imagen Radiográfica , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...